A Survey of Algorithms for Dense Subgraph Discovery
نویسندگان
چکیده
In this chapter, we present a survey of algorithms for dense subgraph discovery. The problem of dense subgraph discovery is closely related to clustering though the two problems also have a number of differences. For example, the problem of clustering is largely concerned with that of finding a fixed partition in the data, whereas the problem of dense subgraph discovery defines these dense components in a much more flexible way. The problem of dense subgraph discovery © Springer Science+Business Media, LLC 2010 C.C. Aggarwal and H. Wang (eds.), Managing and Mining Graph Data, Advances in Database Systems 40, DOI 10.1007/978-1-4419-6045-0_10, 303 304 MANAGING AND MINING GRAPH DATA may wither be defined over single or multiple graphs. We explore both cases. In the latter case, the problem is also closely related to the problem of the frequent subgraph discovery. This chapter will discuss and organize the literature on this topic effectively in order to make it much more accessible to the reader.
منابع مشابه
Discovery of Top-k Dense Subgraphs in Dynamic Graph Collections
Dense subgraph discovery is a key issue in graph mining, due to its importance in several applications, such as correlation analysis, community discovery in the Web, gene co-expression and protein-protein interactions in bioinformatics. In this work, we study the discovery of the top-k dense subgraphs in a set of graphs. After the investigation of the problem in its static case, we extend the m...
متن کاملMining Density Contrast Subgraphs
Dense subgraph discovery is a key primitive in many graph mining applications, such as detecting communities in social networks and mining gene correlation from biological data. Most studies on dense subgraph mining only deal with one graph. However, in many applications, we have more than one graph describing relations among a same group of entities. In this paper, given two graphs sharing the...
متن کاملDensest Subgraph in Streaming and MapReduce
The problem of finding locally dense components of a graph is an important primitive in data analysis, with wide-ranging applications from community mining to spam detection and the discovery of biological network modules. In this paper we present new algorithms for finding the densest subgraph in the streaming model. For any > 0, our algorithms make O(log1+ n) passes over the input and find a ...
متن کاملCore Decomposition in Graphs: Concepts, Algorithms and Applications
Graph mining is an important research area with a plethora of practical applications. Core decomposition in networks, is a fundamental operation strongly related to more complex mining tasks such as community detection, dense subgraph discovery, identification of influential nodes, network visualization, text mining, just to name a few. In this tutorial, we present in detail the concept and pro...
متن کاملDense Subgraphs on Dynamic Networks
In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense subtructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of n...
متن کامل